inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Sodium terbium(III) polyphosphate

Abdelghani Oudahmane,^a Mohamed Daoud,^a Boumediene Tanouti,^a Daniel Avignant^{b*} and Daniel Zambon^b

^aUniversité Cadi Ayyad, Laboratoire de Physico-Chimie des Matériaux et Environnement, Faculté des Sciences Semlalia, Département de Chimie, BP 2390, 40000, Marrakech, Morocco, and ^bUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France

Correspondence e-mail: daniel.avignant@univ-bpclermont.fr

Received 3 March 2010; accepted 17 March 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (P–O) = 0.001 Å; R factor = 0.022; wR factor = 0.055; data-to-parameter ratio = 42.8.

Single crystals of the title compound, NaTb(PO₃)₄, were obtained by solid-state reaction. This compound belongs to type II of long-chain polyphosphates with the general formula $A^{I}B^{III}(PO_{3})_{4}$. It is isotypic with the NaNd(PO₃)₄ and NaEr(PO₃)₄ homologues. The crystal structure is built up of infinite crenelated chains of corner-sharing PO₄ tetrahedra with a repeating unit of four tetrahedra. These chains, extending parallel to [100], are linked by isolated TbO_8 square antiprisms, forming a three-dimensional framework. The Na⁺ ions are located in channels running along [010] and are surrounded by six oxygen atoms in a distorted octahedral environment within a cut-off distance <2.9 Å.

Related literature

All $NaLn(PO_3)_4$ polyphosphates reported up to now, where Ln is a trivalent rare earth element, belong to type II of longchain polyphosphates $A^{\mathrm{I}}B^{\mathrm{III}}(\mathrm{PO}_3)_4$. For corresponding isotypic crystal structures, see: El Masloumi et al. (2005) and Zhu et al. (2006) for Ln = La; Zhu et al. (2008) for Ce and Eu; Horchani-Naifer et al. (2009) for Pr; Koizumi et al. (1976) for Nd; Amami et al. (2005) for Gd; El Masloumi et al. (2008) for Y; Amami et al. (2004) for Ho; Maksimova et al. (1988) for Er. For other isotypic polyphosphates with general composition $A^{\mathrm{I}}B^{\mathrm{III}}(\mathrm{PO}_3)_4$, see: Linde *et al.* (1983) for $AB = \mathrm{KCe}$; Naïli *et al.* (2006) for AgGd; Belam et al. (2007) and Jaoudi et al. (2003); for NaBi. For a review on the crystal chemistry of polyphosphates, see: Durif (1995).

Experimental

Crystal data

NaTb(PO ₃) ₄	a = 7.1712(1)
$M_r = 497.79$	b = 13.0512 (2)
Monoclinic, $P2_1/n$	c = 9.7547(1)

$\beta = 90.604 \ (1)^{\circ}$
$V = 912.92 (2) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.127, \ T_{\max} = 0.478$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ 163 parameters $\Delta \rho_{\rm max} = 2.12 \ {\rm e} \ {\rm \AA}^{-3}$ $wR(F^2) = 0.055$ $\Delta \rho_{\rm min} = -2.03 \text{ e } \text{\AA}^{-3}$ S = 1.106971 reflections

Table 1	
Selected bond lengths (\AA)	

Selected	bond	lengths	(Å).	

P1-O10	1.4896 (14)	P3-O11	1.4827 (13)
P1-O6	1.4918 (13)	P3-O1 ⁱⁱⁱ	1.4868 (13)
$P1-O8^{i}$	1.5857 (13)	$P3-O7^{iv}$	1.5897 (13)
P1-O5	1.5876 (12)	P3-O5	1.5915 (13)
P2-O3 ⁱⁱ	1.4792 (13)	$P4-O9^{ii}$	1.4853 (13)
P2-O4	1.4858 (13)	$P4-O12^{v}$	1.4867 (13)
P2-O8	1.5768 (13)	P4-O2	1.5952 (13)
P2-O2	1.5937 (13)	P4-O7	1.5997 (13)
Commence and a	a. (i)	(;;)	

 $\mu = 8.56 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.025$

 $0.41 \times 0.12 \times 0.10 \ \mathrm{mm}$

26640 measured reflections

6971 independent reflections 6445 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 1, -y, -y(ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$ (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) -x + 2, -y, -z + 2; (v) x + 1, y, z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2313).

References

- Amami, J., Férid, M. & Trabelsi-Ayedi, M. (2005). Mater. Res. Bull. 40, 2144-2152
- Amami, J., Horchani, K., Merle, D. & Férid, M. (2004). J. Phys. IV Fr. 122, 111-115.
- Belam, W., Ben Nasr, C. & Sanz, J. (2007). Ann. Chim. Paris, 32, 45-54.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.
- El Masloumi, M., Imaz, I., Chaminade, J. P., Videau, J. J., Couzi, M., Mesnaoui, M. & Maazaz, M. (2005). J. Solid State Chem. 178, 3581-3588.
- El Masloumi, M., Jubera, V., Pechev, S., Chaminade, J. P., Videau, J. J., Mesnaoui, M., Maazaz, M. & Moine, B. (2008). J. Solid State Chem. 181, 3078-3085.
- Horchani-Naifer, K., Amami, J. & Férid, M. (2009). J. Rare Earths, 27, 1-8.
- Jaoudi, K., Naïli, H., Zouari, N., Mhiri, T. & Daoud, A. (2003). J. Alloys Compd, 354, 104-114.
- Koizumi, H. (1976). Acta Cryst. B32, 2254-2256.
- Linde, S. A., Gorbunova, Y. E. & Lavrov, A. V. (1983). Zh. Neorg. Khim. 28, 1426-1430.
- Maksimova, S., Masloboev, V. A., Palkina, K. K., Sazhenkov, A. A. & Chibiskova, N. T. (1988). Zh. Neorg. Khim. 33, 2503-2505.
- Naïli, H., Ettis, H. & Mhiri, T. (2006). J. Alloys Compd, 424, 400-407.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Zhu, J., Cheng, W. D., Wu, D. S., Zhang, H., Gong, Y. J. & Tong, H. N. (2006). J. Solid State Chem. 179, 597–604.

Zhu, J., Cheng, W. D., Wu, D. S., Zhang, H., Gong, Y. J., Tong, H. N. & Zhao, D. (2008). J. Alloys Compd, 454, 419–426.

supplementary materials

Acta Cryst. (2010). E66, i28-i29 [doi:10.1107/S1600536810010093]

Sodium terbium(III) polyphosphate

A. Oudahmane, M. Daoud, B. Tanouti, D. Avignant and D. Zambon

Comment

It is now well established that long-chain polyphosphates with general formula $A^{I}B^{III}(PO_3)_4$ can be divided in seven structural types (Jaoudi *et al.*, 2003). All long-chain polyphosphates of formula Na*Ln*P₄O₁₂ (*Ln* = rare earth element) reported up to now (El Masloumi *et al.* 2005; Zhu *et al.* 2006; Zhu *et al.* 2008; Horchani-Naifer *et al.* 2009; Koizumi *et al.* 1976; Amami *et al.* 2005; El Masloumi *et al.* 2008; Amami *et al.* 2004; Maksimova *et al.* 1988) belong to the structural type II which has been first described on basis of the KCe(PO₃)₄ structure (Linde *et al.*, 1983). A few other $A^{I}B^{III}$ cationic combinations such as AgGd (Naïli *et al.* 2006) and NaBi (Jaoudi *et al.* 2003; Belam *et al.* 2007) also lead to polyphosphates which belong to the structural type II. The structure of the title compound also fits in this isotypic series. The underlying structure has many times been described as built up of (PO₃)_∞ chains running along the [100] direction and further linked by isolated *Ln*O₈

polyhedra. The resulting three dimensional framework delimits tunnels where the Na⁺ ions are located. Instead of using this description, we will focus on the connectivity between the $(PO_3)_{\infty}$ chains and the TbO₈ square antiprisms for our account. Each TbO₈ square antiprism is linked to four (PO₃)_∞ chains by corner-sharing involving the non-bridging oxygen atoms of the PO₄ groups that exhibit the shorter P—O distances within the chain. Their P—O distances range from 1.4792 (13) Å to 1.4918 (13) Å. The chains are crenelated with a repeating unit of four corner-sharing tetrahedra, as displayed in Fig. 1. The repeating unit is built up of PO₄ tetrahedra corresponding to the four crystallographically independent phosphorus atoms labelled from P1 to P4. If the origin of the chain is taken at the O2 position for instance, then the P2 and P4 tetrahedra are the end-groupings of the repeating unit while P1 and P3 tetrahedra are involved in the internal diphosphate group. Each $(PO_3)_{\infty}$ chain is linked to four rows of isolated TbO₈ square antiprisms parallel to the direction of the chain (Fig. 2). With the aforementioned origin convention both terminal $P(2)O_4$ and $P(4)O_4$ tetrahedra are connected in a bidentate fashion on one side of the square face of the archimedean antiprisms of the first row while the internal $P(1)O_4$ — $P(3)O_4$ diphosphate group is also connected in a bidentate fashion on one side of the square face of the antiprisms of the second row (Fig. 3a and 3 b). Therefore the two rows of TbO₈ polyhedra are translated with a half-period of the (PO₃)_∞ chain relative to one another (Fig. 3c). Thus the tetrahedra involved in the internal P2O7 groups share their non-bridging oxygen atoms with two TbO₈ polyhedra belonging to each of the first and second rows, respectively. Then the $(PO_3)_{\infty}$ chain is connected to the third and fourth rows in a similar way but the role played by the couples $P(1)O_4$ — $P(3)O_4$ and $P(2)O_4$ — $P(4)O_4$ are inverted, this last becoming the internal diphosphate group.

For a general review on the crystal chemistry of polyphosphates, see: Durif (1995).

Experimental

Crystals of the title compound were synthesized by reacting Tb_4O_7 with $(NH_4)H_2PO_4$ and Na_2CO_3 in a platinum crucible. A mixture of these reagents in the molar ratio 5 : 85 : 10 was used for the synthesis. The mixture has first been heated at 473 K for 12 h, then at 573 K for 12 h and finally at 773 K for 24 h. The muffle furnace was then cooled down first to 723 K at the rate of 2 K h^{-1} and then to room temperature at the rate of 15 K h^{-1} . Single crystals were extracted from the batch by washing with hot water.

Refinement

The highest residual peak in the final difference Fourier map was located 0.61 Å from atom Tb and the deepest hole was located 0.45 Å from atom Tb.

Figures

Fig. 1. ORTEP view of the repeating unit of the $(PO_3)_{\infty}$ chains. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x+1, -y, -z+2; (ii) x+1/2, -y+1/2, z-1/2; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+2, -y, -z+2; (v) x+1, y, z.

Fig. 2. View of four rows of TbO₈ polyhedra connected through one (PO₃)_∞ chain.

Fig. 3. Details of the connections between the $(PO_3)_{\infty}$ chains and the TbO₈ polyhedra: a) view showing the two kind of bidentate attachments. b) view showing the bidentate attachments and the PO₄ groups shared between two TbO₈ square antiprisms belonging to two adjacent rows. c) view showing the shift (p/2) of one chain relative to the other.

Sodium terbium polytetraphosphate

Crystal data NaTb(PO₃)₄ $M_r = 497.79$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.1712 (1) Å b = 13.0512 (2) Å c = 9.7547 (1) Å $\beta = 90.604$ (1)° V = 912.92 (2) Å³

F(000) = 928 $D_x = 3.622 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 27177 reflections $\theta = 3.5-43.9^{\circ}$ $\mu = 8.56 \text{ mm}^{-1}$ T = 296 KNeedle, colourless $0.41 \times 0.12 \times 0.10 \text{ mm}$

Z = 4

Data collection

Bruker APEXII CCD diffractometer	6971 independent reflections
Radiation source: fine-focus sealed tube	6445 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
Detector resolution: 8.3333 pixels mm ⁻¹	$\theta_{\text{max}} = 43.8^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$
ω and ϕ scans	$h = -13 \rightarrow 8$
Absorption correction: multi-scan (SADABS; Bruker, 2008)	$k = -25 \rightarrow 17$
$T_{\min} = 0.127, \ T_{\max} = 0.478$	$l = -19 \rightarrow 18$
26640 measured reflections	

Refinement

Refinement on F^2	0 constraints
Least-squares matrix: full	Primary atom site location: structure-invariant direct methods
$R[F^2 > 2\sigma(F^2)] = 0.022$	Secondary atom site location: difference Fourier map
$wR(F^2) = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0212P)^2 + 1.888P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.003$
6971 reflections	$\Delta \rho_{max} = 2.12 \text{ e} \text{ Å}^{-3}$
163 parameters	$\Delta \rho_{min} = -2.03 \text{ e } \text{\AA}^{-3}$
0 restraints	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and i	sotron	ic or e	auivalent	isotron	oic dis	nlacement	narameters	$(Å^2$	1
1 ruchonui	uionnic	coorainaics	unu i	souopi		γπιναιζπι	isonop	ic ais	pracement	purumeters	(11	1

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Na	-0.00068 (15)	0.22179 (9)	1.06373 (11)	0.02105 (19)
Tb	0.512736 (10)	0.219027 (5)	0.976594 (7)	0.00611 (2)
P1	0.24948 (6)	0.10137 (3)	1.24460 (4)	0.00585 (6)
P2	0.87630 (6)	0.11488 (3)	0.76336 (4)	0.00525 (5)
P3	0.64720 (6)	0.12784 (3)	1.30443 (4)	0.00514 (5)

supplementary materials

P4	1.26813 (6)	0.09081 (3)	0.69983 (4)	0.00584 (6)
O1	0.22211 (18)	0.28938 (9)	0.89407 (14)	0.01015 (19)
O2	1.08668 (17)	0.08115 (10)	0.79214 (13)	0.00956 (18)
O3	0.36683 (19)	0.31058 (10)	1.14928 (13)	0.01003 (18)
O4	0.79883 (18)	0.14688 (10)	0.89738 (13)	0.00974 (18)
O5	0.42970 (17)	0.12511 (10)	1.33504 (13)	0.00876 (17)
O6	0.09345 (18)	0.16584 (10)	1.29625 (14)	0.01081 (19)
07	1.28234 (19)	-0.02144 (9)	0.63492 (13)	0.01000 (19)
08	0.7833 (2)	0.01335 (10)	0.70784 (14)	0.01089 (19)
O9	0.73740 (19)	0.33790 (10)	1.08306 (14)	0.01139 (19)
O10	0.28652 (19)	0.10837 (10)	1.09492 (13)	0.01001 (18)
O11	0.67772 (19)	0.13293 (10)	1.15449 (13)	0.01040 (19)
O12	0.42899 (18)	0.11069 (11)	0.79349 (15)	0.0125 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na	0.0165 (4)	0.0309 (5)	0.0157 (4)	0.0077 (3)	-0.0022 (3)	0.0012 (3)
Tb	0.00563 (3)	0.00740 (3)	0.00529 (3)	0.00035 (2)	0.00018 (2)	-0.00028 (2)
P1	0.00480 (13)	0.00573 (13)	0.00703 (14)	-0.00036 (10)	0.00008 (10)	-0.00060 (11)
P2	0.00561 (13)	0.00468 (12)	0.00548 (13)	0.00011 (10)	0.00126 (10)	0.00071 (10)
P3	0.00532 (13)	0.00475 (12)	0.00534 (13)	-0.00013 (10)	-0.00051 (10)	-0.00029 (10)
P4	0.00542 (13)	0.00510 (13)	0.00700 (14)	0.00056 (10)	0.00050 (10)	0.00007 (11)
01	0.0087 (4)	0.0083 (4)	0.0134 (5)	0.0018 (3)	-0.0021 (4)	0.0039 (4)
O2	0.0055 (4)	0.0131 (5)	0.0101 (4)	0.0020 (3)	0.0015 (3)	0.0033 (4)
O3	0.0113 (5)	0.0089 (4)	0.0100 (4)	-0.0008 (4)	0.0020 (3)	-0.0047 (4)
O4	0.0090 (4)	0.0131 (5)	0.0071 (4)	0.0025 (4)	0.0029 (3)	-0.0016 (4)
O5	0.0052 (4)	0.0133 (5)	0.0077 (4)	-0.0013 (3)	-0.0003 (3)	-0.0016 (4)
O6	0.0076 (4)	0.0113 (5)	0.0135 (5)	0.0027 (4)	0.0004 (3)	-0.0030 (4)
07	0.0151 (5)	0.0058 (4)	0.0090 (4)	0.0031 (4)	-0.0026 (4)	-0.0009 (3)
08	0.0137 (5)	0.0067 (4)	0.0123 (5)	-0.0031 (4)	-0.0005 (4)	-0.0007 (4)
09	0.0130 (5)	0.0094 (4)	0.0118 (5)	-0.0029 (4)	0.0043 (4)	-0.0046 (4)
O10	0.0121 (5)	0.0105 (4)	0.0074 (4)	-0.0018 (4)	-0.0006 (3)	-0.0001 (3)
O11	0.0106 (5)	0.0140 (5)	0.0066 (4)	0.0017 (4)	0.0009 (3)	0.0027 (4)
O12	0.0070 (4)	0.0156 (5)	0.0149 (5)	-0.0001 (4)	-0.0020 (4)	-0.0064 (4)

Geometric parameters (Å, °)

Na—O4 ⁱ	2.3680 (17)	P2—O4	1.4858 (13)
Na—O9 ⁱ	2.4223 (17)	P2—O8	1.5768 (13)
Na—O6	2.4700 (17)	P2—O2	1.5937 (13)
Na—O1	2.4750 (18)	P2—Na ^{vi}	3.3550 (12)
Na—O10	2.5520 (17)	P3—O11	1.4827 (13)
Na—O11 ⁱ	2.7369 (18)	P3—O1 ^{vii}	1.4868 (13)
Na—P1	2.9554 (11)	P3—O7 ^{viii}	1.5897 (13)
Na—O3	2.9897 (17)	Р3—О5	1.5915 (13)
Na—P4 ⁱⁱ	3.2464 (11)	P3—Na ^{vii}	3.3808 (12)

Na—P2 ⁱ	3.3550 (12)	P4—O9 ^{iv}	1.4853 (13)
Na—P3 ⁱⁱⁱ	3.3808 (12)	P4—O12 ^{vi}	1.4867 (13)
Tb—O3	2.3232 (12)	P4—O2	1.5952 (13)
Tb—O12	2.3511 (13)	P4—O7	1.5997 (13)
Tb011	2.3729 (12)	P4—Na ^{ix}	3.2464 (12)
Tb—O6 ^{iv}	2.3894 (13)	O1—P3 ⁱⁱⁱ	1.4868 (12)
Tb—O4	2.3930 (12)	$O3-P2^{x}$	1.4792 (13)
Tb—O1	2.4082 (12)	O4—Na ^{vi}	2.3680 (17)
Tb—O9	2.4589 (13)	O6—Tb ^x	2.3894 (13)
Tb—O10	2.4676 (13)	O7—P3 ^{viii}	1.5897 (13)
P1—O10	1.4896 (14)	O8—P1 ^v	1.5857 (13)
P1—O6	1.4918 (13)	O9—P4 ^x	1.4853 (13)
P1—O8 ^v	1.5857 (13)	O9—Na ^{vi}	2.4223 (17)
P1—O5	1.5876 (12)	O11—Na ^{vi}	2.7369 (18)
P2—O3 ^{iv}	1.4792 (13)	O12—P4 ⁱ	1.4867 (13)
O4 ⁱ —Na—O9 ⁱ	81.14 (5)	O1—Tb—O10	78.97 (4)
O4 ⁱ —Na—O6	131.70 (7)	O9—Tb—O10	127.07 (4)
O9 ⁱ —Na—O6	108.55 (6)	O3—Tb—Na ^{vi}	105.53 (4)
O4 ⁱ —Na—O1	94.62 (6)	O12—Tb—Na ^{vi}	115.25 (4)
O9 ⁱ —Na—O1	109.61 (6)	O11—Tb—Na ^{vi}	49.79 (4)
O6—Na—O1	123.18 (6)	O6 ^{iv} —Tb—Na ^{vi}	85.72 (4)
O4 ⁱ —Na—O10	109.00 (6)	O4—Tb—Na ^{vi}	40.92 (4)
O9 ⁱ —Na—O10	168.27 (7)	O1—Tb—Na ^{vi}	155.88 (4)
O6—Na—O10	60.44 (5)	O9—Tb—Na ^{vi}	42.38 (4)
O1—Na—O10	76.15 (5)	O10—Tb—Na ^{vi}	122.57 (4)
O4 ⁱ —Na—O11 ⁱ	62.55 (5)	O3—Tb—Na	52.13 (4)
O9 ⁱ —Na—O11 ⁱ	65.37 (5)	O12—Tb—Na	86.28 (4)
O6—Na—O11 ⁱ	78.51 (5)	O11—Tb—Na	108.59 (4)
O1—Na—O11 ⁱ	156.84 (6)	O6 ^{iv} —Tb—Na	113.76 (4)
O10—Na—O11 ⁱ	113.41 (6)	O4—Tb—Na	156.20 (4)
O4 ⁱ —Na—P1	123.36 (5)	O1—Tb—Na	39.78 (4)
O9 ⁱ —Na—P1	138.81 (6)	O9—Tb—Na	122.23 (4)
O6—Na—P1	30.27 (3)	O10—Tb—Na	41.86 (4)
O1—Na—P1	101.34 (5)	Na ^{vi} —Tb—Na	153.28 (3)
O10—Na—P1	30.27 (3)	O3—Tb—Na ^{iv}	127.53 (4)
O11 ⁱ —Na—P1	95.15 (4)	O12—Tb—Na ^{iv}	50.51 (4)
O4 ⁱ —Na—O3	151.45 (6)	O11—Tb—Na ^{iv}	144.46 (4)
09 ⁱ —Na—O3	114.70 (6)	O6 ^{iv} —Tb—Na ^{iv}	33.06 (4)
O6—Na—O3	68.08 (5)	O4—Tb—Na ^{iv}	76.60 (3)
O1—Na—O3	58.34 (5)	O1—Tb—Na ^{iv}	65.71 (4)
O10—Na—O3	58.91 (4)	O9—Tb—Na ^{iv}	107.72 (4)

supplementary materials

O11 ⁱ —Na—O3	144.81 (5)	O10—Tb—Na ^{iv}	124.12 (3)
P1—Na—O3	60.77 (3)	Na ^{vi} —Tb—Na ^{iv}	104.11 (3)
O4 ⁱ —Na—P4 ⁱⁱ	106.40 (5)	Na—Tb—Na ^{iv}	101.88 (2)
O9 ⁱ —Na—P4 ⁱⁱ	25.46 (3)	O10—P1—O6	116.01 (8)
O6—Na—P4 ⁱⁱ	89.03 (4)	O10—P1—O8 ^v	111.91 (7)
O1—Na—P4 ⁱⁱ	109.94 (5)	O6—P1—O8 ^v	108.64 (8)
O10—Na—P4 ⁱⁱ	143.44 (5)	O10—P1—O5	112.35 (7)
O11 ⁱ —Na—P4 ⁱⁱ	75.60 (4)	O6—P1—O5	108.14 (7)
P1—Na—P4 ⁱⁱ	117.77 (4)	O8 ^v —P1—O5	98.28 (7)
O3—Na—P4 ⁱⁱ	92.66 (4)	O10—P1—Na	59.71 (6)
O4 ⁱ —Na—P2 ⁱ	22.72 (3)	O6—P1—Na	56.56 (6)
O9 ⁱ —Na—P2 ⁱ	97.54 (5)	O8 ^v —P1—Na	125.86 (6)
O6—Na—P2 ⁱ	138.23 (5)	O5—P1—Na	135.51 (6)
O1—Na—P2 ⁱ	74.33 (4)	O3 ^{iv} —P2—O4	117.55 (8)
O10—Na—P2 ⁱ	93.86 (4)	O3 ^{iv} —P2—O8	106.17 (8)
O11 ⁱ —Na—P2 ⁱ	83.77 (4)	O4—P2—O8	112.19 (8)
P1—Na—P2 ⁱ	116.91 (4)	O3 ^{iv} —P2—O2	110.49 (7)
O3—Na—P2 ⁱ	128.89 (4)	O4—P2—O2	106.54 (7)
P4 ⁱⁱ —Na—P2 ⁱ	122.67 (3)	O8—P2—O2	102.98 (7)
O4 ⁱ —Na—P3 ⁱⁱⁱ	85.41 (4)	O3 ^{iv} —P2—Na ^{vi}	113.14 (6)
O9 ⁱ —Na—P3 ⁱⁱⁱ	86.83 (4)	O8—P2—Na ^{vi}	139.10 (6)
O6—Na—P3 ⁱⁱⁱ	140.69 (5)	O2—P2—Na ^{vi}	73.82 (5)
O1—Na—P3 ⁱⁱⁱ	23.52 (3)	O11—P3—O1 ^{vii}	119.43 (8)
O10—Na—P3 ⁱⁱⁱ	99.60 (5)	O11—P3—O7 ^{viii}	110.89 (7)
O11 ⁱ —Na—P3 ⁱⁱⁱ	139.46 (4)	O1 ^{vii} —P3—O7 ^{viii}	107.72 (7)
P1—Na—P3 ⁱⁱⁱ	124.20 (4)	O11—P3—O5	109.95 (7)
O3—Na—P3 ⁱⁱⁱ	72.62 (4)	O1 ^{vii} —P3—O5	104.75 (7)
P4 ⁱⁱ —Na—P3 ⁱⁱⁱ	91.96 (3)	O7 ^{viii} —P3—O5	102.65 (7)
P2 ⁱ —Na—P3 ⁱⁱⁱ	70.71 (2)	O11—P3—Na ^{vii}	139.71 (6)
O4 ⁱ —Na—Tb ⁱ	41.45 (3)	O7 ^{viii} —P3—Na ^{vii}	109.24 (5)
O9 ⁱ —Na—Tb ⁱ	43.17 (4)	O5—P3—Na ^{vii}	63.70 (5)
O6—Na—Tb ⁱ	118.09 (5)	$O9^{iv}$ —P4—O12 ^{vi}	118.03 (9)
O1—Na—Tb ⁱ	118.61 (5)	O9 ^{iv} —P4—O2	111.53 (7)
O10—Na—Tb ⁱ	143.63 (5)	O12 ^{vi} —P4—O2	107.41 (8)
O11 ⁱ —Na—Tb ⁱ	41.46 (3)	O9 ^{iv} —P4—O7	106.24 (7)
P1—Na—Tb ⁱ	136.04 (4)	O12 ^{vi} —P4—O7	110.53 (7)
O3—Na—Tb ⁱ	157.45 (4)	O2—P4—O7	101.93 (7)
P4 ⁱⁱ —Na—Tb ⁱ	66.69 (2)	O12 ^{vi} —P4—Na ^{ix}	73.95 (7)
P2 ⁱ —Na—Tb ⁱ	62.75 (2)	O2—P4—Na ^{ix}	135.52 (6)
P3 ⁱⁱⁱ —Na—Tb ⁱ	98.09 (3)	O7—P4—Na ^{ix}	119.55 (6)
O3—Tb—O12	138.31 (5)	P3 ⁱⁱⁱ —O1—Tb	141.24 (8)

O3—Tb—O11	86.46 (5)	P3 ⁱⁱⁱ —O1—Na	114.86 (8)
O12—Tb—O11	113.09 (5)	Tb—O1—Na	101.72 (5)
O3—Tb—O6 ^{iv}	108.96 (5)	P2—O2—P4	130.93 (8)
O12—Tb—O6 ^{iv}	83.15 (5)	P2 ^x —O3—Tb	150.04 (8)
O11—Tb—O6 ^{iv}	135.52 (5)	P2 ^x —O3—Na	119.88 (7)
O3—Tb—O4	146.18 (5)	Tb—O3—Na	90.04 (4)
O12—Tb—O4	74.40 (5)	P2—O4—Na ^{vi}	119.28 (8)
O11—Tb—O4	68.11 (4)	P2—O4—Tb	136.43 (8)
O6 ^{iv} —Tb—O4	78.14 (5)	Na ^{vi} —O4—Tb	97.62 (5)
O3—Tb—O1	69.60 (5)	P1—O5—P3	133.93 (8)
O12—Tb—O1	76.24 (5)	P1—O6—Tb ^x	142.34 (8)
011—Tb—O1	148.01 (5)	P1—O6—Na	93.17 (7)
O6 ^{iv} —Tb—O1	74.31 (5)	Tb ^x —O6—Na	115.10 (6)
O4—Tb—O1	141.63 (5)	P3 ^{viii} —O7—P4	132.38 (8)
O3—Tb—O9	70.57 (4)	P2—O8—P1 ^v	139.15 (9)
O12—Tb—O9	149.47 (5)	P4 ^x —O9—Na ^{vi}	110.04 (8)
O11—Tb—O9	70.76 (5)	P4 ^x —O9—Tb	144.13 (8)
O6 ^{iv} —Tb—O9	75.61 (5)	Na ^{vi} —O9—Tb	94.45 (5)
O4—Tb—O9	79.89 (4)	P1—O10—Tb	128.26 (7)
O1—Tb—O9	117.48 (5)	P1—O10—Na	90.02 (7)
O3—Tb—O10	70.03 (5)	Tb—O10—Na	97.96 (5)
O12—Tb—O10	80.76 (5)	P3—O11—Tb	131.68 (8)
O11—Tb—O10	72.90 (4)	P3—O11—Na ^{vi}	118.15 (8)
O6 ^{iv} —Tb—O10	151.40 (4)	Tb—O11—Na ^{vi}	88.75 (5)
O4—Tb—O10	119.40 (5)	P4 ⁱ —O12—Tb	139.65 (8)

Symmetry codes: (i) x-1, y, z; (ii) x-3/2, -y+1/2, z+1/2; (iii) x-1/2, -y+1/2, z-1/2; (iv) x+1/2, -y+1/2, z-1/2; (v) -x+1, -y, -z+2; (vi) x+1, y, z; (vii) x+1/2, -y+1/2, z+1/2; (viii) -x+2, -y, -z+2; (ix) x+3/2, -y+1/2, z-1/2; (x) x-1/2, -y+1/2, z+1/2.

Fig. 1

Fig. 2

Fig. 3

